Gene therapy using the human telomerase catalytic subunit gene promoter enables targeting of the therapeutic effects of vesicular stomatitis virus matrix protein against human lung adenocarcinoma
نویسندگان
چکیده
The catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), is highly active in immortalized cells and more than 90% of human cancer cells, but is quiescent in the majority of normal somatic cells. Thus, the hTERT promoter has been extensively used in targeted cancer gene therapy. Vesicular stomatitis virus (VSV) matrix protein (MP) induces the apoptosis of tumor cells in the absence of other viral components. In our previous studies, we successfully constructed the pVAX-M plasmid from the pVAX plasmid, which expressed wild-type VSV MP (VSV MP is under the control of the CMV promoter) and demonstrated that pVAX-M efficiently suppresses the growth of malignant tumors via the induction of apoptosis in vitro and in vivo. The present study was designed to construct the plasmid phTERTM (VSV MP is under the control of the hTERT promoter) and investigate whether it had a targeted antitumor effect in nude mice bearing human lung adenocarcinoma. In vitro, A549 human lung adenocarcinoma cells were treated with NS, Lip-null, etoposide, Lip-pVAX-M or Lip-phTERT-M, and examined for cell viability through MTT assays or for apoptosis by flow cytometry and TUNEL assays. In vivo, A549 human lung carcinoma models in nude mice were established. Mice were treated with 10 4-weekly intravenous administrations of NS, Lip-null, etoposide (2 mg/kg), Lip-pVAX-M or Lip-phTERT-M. Subsequently, Lip-phTERT-M was found to be the most efficient inhibitor of tumor growth and inducer of tumor cell apoptosis when compared with the other groups in vivo and in vitro (P<0.05). Notably, immunohistochemical staining showed that Lip-phTERT-M significantly limited the overexpression of VSV MP to the tumor tissues and reduced VSV MP expression in other organs in comparison with Lip-pVAX-M (P<0.05). Therefore, it can be concluded that phTERT-M demonstrates a targeted antitumor effect on A549 human lung adenocarcinoma cells. These observations suggest that phTERT-M gene therapy may be a novel and potent strategy for targeting human lung adenocarcinoma.
منابع مشابه
In silico and in vitro studies of cytotoxic activity of different peptides derived from vesicular stomatitis virus G protein
Objective(s):This study aims at exploring cytotoxic activity of different peptides derived from VSVG protein against MCF-7 and MDA-MB-231 breast cancer cell lines and human embryonic kidney normal cell (HEK 293). Materials and Methods: The ANTICP web server was used to predict anticancer peptides. The cytotoxic activity of peptides with high score (P26, P7) and low score (P19) was examined b...
متن کاملExpression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies
Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...
متن کاملOvarian cancer treatment with a tumor-targeting and gene expression-controllable lipoplex
Overexpression of folate receptor alpha (FRα) and high telomerase activity are considered to be the characteristics of ovarian cancers. In this study, we developed FRα-targeted lipoplexes loaded with an hTERT promoter-regulated plasmid that encodes a matrix protein (MP) of the vesicular stomatitis virus, F-LP/pMP(2.5), for application in ovarian cancer treatment. We first characterized the phar...
متن کاملAntitumor effect of a novel adeno-associated virus vector targeting to telomerase activity in tumor cells.
Telomerase activity is a wide tumor marker. Human telomerase reverse transcriptase (hTERT), the catalytic subunit of the telomerase, is transcriptionally upregulated exclusively in about 90% of cancer cells. In this study, we constructed a novel adeno-associated virus (AAV) vector containing the human interferon-beta (hIFN-beta) gene under the control of hTERT promoter (AAV-hTERT-hIFN-beta) and...
متن کاملTumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers.
Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase, which is highly active in immortalized cells and >85% of human cancers but is quiescent in most normal somatic cells. To test the feasibility of using the hTERT promoter to induce tumor-specific transgene expression in cancer gene therapy, we constructed an adenoviral vector expressing a LacZ reporter gene dr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2012